Real-Time Object Segmentation Using a Bag of Features Approach

نویسندگان

  • David Aldavert
  • Arnau Ramisa
  • Ramon López de Mántaras
  • Ricardo Toledo
چکیده

In this paper, we propose an object segmentation framework, based on the popular bag of features (BoF), which can process several images per second while achieving a good segmentation accuracy assigning an object category to every pixel of the image. We propose an efficient color descriptor to complement the information obtained by a typical gradient-based local descriptor. Results show that color proves to be a useful cue to increase the segmentation accuracy, specially in large homogeneous regions. Then, we extend the Hierarchical K-Means codebook using the recently proposed Vector of Locally Aggregated Descriptors method. Finally, we show that the BoF method can be easily parallelized since it is applied locally, thus the time necessary to process an image is further reduced. The performance of the proposed method is evaluated in the standard PASCAL 2007 Segmentation Challenge object segmentation dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ساختار دهی آنی داده‌‌های مکانی ورودی GIS با تأکید بر عارضه راه

An important issue in implementation of a GIS system is preparation of data to be entered in GIS. To produce spatial data for GIS using photogrammetric techniques, conventional method is to apply photogrammetric and GIS systems individually (off-line procedure). This approach is costly, time consuming and somehow unreliable due to the fact that 3D photogrammetric model is not available at the ...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Prostate segmentation and lesions classification in CT images using Mask R-CNN

Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Improving bag-of-features action recognition with non-local cues

Local space-time features have recently shown promising results within Bag-of-Features (BoF) approach to action recognition in video. Pure local features and descriptors, however, provide only limited discriminative power implying ambiguity among features and sub-optimal classification performance. In this work, we propose to disambiguate local space-time features and to improve action recognit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010